a2 United States Patent
Zhang et al.

US009384228B2

US 9,384,228 B2
Jul. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54) IMPLEMENTING A
MULTI-COLUMN/MULTI-ROW
CONSTRAINT IN A RELATIONAL DATABASE
TABLE

(71) Applicant: Oracle International Corporation,

Redwood Shores, CA (US)

(72) Inventors: Zhihai Zhang, Nashua, NH (US);

Qingyun Xie, Bedford, NH (US); Siva

Ravada, Nashua, NH (US)

(73)

Assignee: QOracle International Corporation,

Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 356 days.

@

(22)

Appl. No.: 13/782,964

Filed: Mar. 1, 2013

(65) Prior Publication Data

US 2014/0250060 A1 Sep. 4, 2014

Int. Cl1.
GO6F 7/00
GO6F 17/00
GO6F 17/30

U.S. CL
CPC GO6F 17/30345 (2013.01)
Field of Classification Search
CPC ..o GOG6F 17/30286; GOGF 17/30572;
GOGF 17/30864; GOGF 17/30392; GOGF
17/3056; GOGF 17/30595; GOGF 17/30604;
GOGF 17/30371; GOGF 17/30539; GOGF
17/30958
See application file for complete search history.

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

(58)

1A00

Table atToT, _/Retaton 102

Birthplace
Scott USA

Scott UsA
China
China

Witness
Father
Midwife

Person

Dector
Midwife

Herman

Herman

[Pamon | taca] winas]
(oot [ray | rover |

(56) References Cited

U.S. PATENT DOCUMENTS

6,381,605 Bl 4/2002 Kothuri et al.
6,470,344 B1 10/2002 Kothuri et al.
6,505,205 Bl 1/2003 Kothuri et al.
6,735,593 B1* 5/2004 Williams
6,879,980 Bl 4/2005 Kothuri et al.
7,080,065 Bl 7/2006 Kothuri et al.
7,177,882 B2 2/2007 Xie et al.
7,219,108 B2 5/2007 Kothuri et al.
7,379,936 B2 5/2008 Kothuri et al.
7,454,428 B2 11/2008 Wang et al.
7,490,084 B2 2/2009 Kothuri et al.
7,580,927 Bl 8/2009 Abugov et al.
7,640,242 B2 12/2009 Chatterjee et al.
7,747,591 B2 6/2010 Chatterjee et al.
7,774,381 B2 8/2010 Kothuri et al.
7,877,405 B2 1/2011 Kothuri et al.
7,970,742 B2 6/2011 Hanckel et al.
8,145,641 B2 3/2012 Chatterjee et al.

(Continued)
Primary Examiner — Susan Chen
(74) Attorney, Agent, or Firm — Vista IP Law Group, LLP

(57) ABSTRACT

A method, system, and computer program product for imple-
menting a multi-column/multi-row constraint. Lock tech-
niques prevent access collisions even when two or more con-
currently running software applications are attempting to
insert rows into the same relational database table (subject to
the same multi-column/multi-row constraints). The method
commences by receiving (e.g., from a first process) a first row
to be inserted into a relational database table where the row
comprises at least two constrained columns corresponding to
the multi-column/multi-row constraint, then receiving (e.g.,
from a second process) a second row to be inserted into the
same table. Using column locks, the method recognizes the
potential for conflicting row insertions, and manages locks to
prevent conflicting access grants to the two constrained col-
umns of the existing database table. The evaluation of the
multi-column/multi-row constraint is performed over the first
row to be inserted and a row or rows of the relational database
table.

20 Claims, 10 Drawing Sheets

Candidate Insertion
Row 1049

Constraint Enforcement Engine 103

.

Multi-column Censtraint Engine 108 |

Multi-row Constraint Engine 108 |

s
(
(
(
(
(
(
(
(
(
1

Table at T=T,

Reiation 102

Person Witness

Scott usa Father

Scott USA Midwife

Herman | China Doctor

Herman | China Midwife

Mut-columnMuti-Row Constaint Engine 110]
[oK]
|
|
|
I
I
I
I
I
I
|

Time
To T T2 Ta

US 9,384,228 B2

Page 2
(56) References Cited 8,533,181 B2 9/2013 Hu et al.
8,812,488 B2 8/2014 Bamba et al.
U.S. PATENT DOCUMENTS 2008/0126397 Al 5/2008 Alexander et al.
2009/0100089 Al* 4/2009 Eadonetal. 707/102
8,156,083 B2 4/2012 Banerjee et al. 2009/0328043 Al1* 12/2009 Vermette et al. 718/101
8,161,081 B2* 4/2012 Kaufmanetal. ... 707/802 2012/0191682 Al 7/2012 Banerjee et al.
8,224,871 B2 7/2012 Kothuri et al. 2013/0117313 Al* 5/2013 Miaoetal. ...cccocvvvvennne 707/781
8,228,326 B2 7/2012 Kothuri et al. 2014/0244635 Al 8/2014 Huetal.
8,248,409 B2 8/2012 Kazar et al. 2014/0270478 Al 9/2014 Chen et al.
8,269,764 B2 9/2012 Ravada et al.
8,386,468 B2 2/2013 Hu et al. * cited by examiner

U.S. Patent Jul. 5, 2016 Sheet 1 of 10 US 9,384,228 B2

1A00
Table at T=T, /_/Relatlon 102
Person Birthplace | Witness
Scott USA Father
Scott USA Midwife
Herman | China Doctor
Herman China Midwife
Scott ltaly Father [~ Row 104,
Constraint Enforcement Engine 103
Multi-column Constraint Engine 106
e

Multi-row Constraint Engine 108

Multi-column/Multi-Row Constraint Engine 110

Table at T=T4 /_/Relation 102

IOKI OK ! X]
| I |
| | !
| I] Person Birthplace | Witness
: : : Scott USA Father
| |] Scott USA Midwife
: : : Herman China Doctor
| | | Herman | China Midwife
Time | I | >
To Ty To T;

U.S. Patent Jul. 5, 2016 Sheet 2 of 10 US 9,384,228 B2
1800
Table at T=T, /-/Relatnon 102
Person Birthplace| Withess
Scott USA Father
Scott USA Midwife
Herman | China Doctor
Herman | China Midwife
I | | insertion 104y
I Scott l USA I Doctor Insertion 1044
Scott ftaly Father |~ Insertion 1044
Constraint Enforcement Engine 103
Multi-column Constraint Engine 106
e
Multi-row Constraint Engine 108
Multi-column/Multi-Row Constraint Engine 110
v A 4 i_
IOKHOK”OKI
I]]
| | !
: : : Person Birthplace{ Witness
Scott USA Fath
' ' ! Relation I co ather
: : : 112" | Scott USA Midwife
i | i Herman | China Doctor
: : : Herman | China Midwife
| I ! Scott USA Doctor
Time N — >
To Ty T2 Ts Ty

FIG. 1B

US 9,384,228 B2

Sheet 3 of 10

Jul. §5,2016

U.S. Patent

¢ 'Old

092 JUIBHSUCD MOI-BINN/UWIN|OD-HINjY

017 sputenysuo) s|qel-enu|

00¢

US 9,384,228 B2

Sheet 4 of 10

Jul. §5,2016

U.S. Patent

JUIBASUOD Ji Ya8yD

/

oove

paysne

gce

SIHBAISUOD
BAIIOR BOION

20€

|

|

|

!

!
826 —~

_

Ve 'Old

“ " [VEE

-
<

MOJ UBsUl (PBYSHES JUIBHSUOD) g4 A

PaYSHES 8¢ 0] PSRN SEM JUBIISUOD 41 18]

S

€0€ —~,

8¢
iabeuey S|geL

a {
 uondeoxa sseooe osies (POSES Jou JuRNsUod) — gge “
HOBYD JHRASLOD Winjey i
’ . . \l_ln vze
. sjge; Aienp . aze
i i {paumo) 7|
" a¢ old ! — 0% _
| of (pauUMD=] BPOD JOIIB)
| “ 8p0Q YO0} SIBN{EAT
i 17459 N\ gi¢ N
]] 2P0 0| S 1 AR
1l]
" OLE - ._1 00l-X, UB S 300} V7 1senbay _
_ | 00} G Pajesolly \w._lmom
! < {
uoneaoje o0] gy 1senbay
! 90€ — o
_ _ %00} ¥ PeYeOlly _ vO€
_ “ HA LONBIOJE 3204 i 1S8nbay _
JUBLLBDIOJUS JUIBASUOD Jsanbay | i v_
1« - L0 ! I
a,o. S1BPIPUEBD JO LIOYIBSUI JSanbey | | |
I — €07 subuz
8t 08¢
Wwewsoloug
suofjeoyddy 1ebeuep o007 RSO

US 9,384,228 B2

Sheet 5 of 10

Jul. §5,2016

U.S. Patent

/

i

.A

|

|

|

|
82¢ nT

g€ "old

§ ya #ee f

<l

MOIUBSUE (PBYSHES JUIRASUOD) gg ¢

DOYSHES 84 O} POWISSP SEA JUIBIISUOD }i }S8

uondeoxs asiel pue SYoO} i SSea|Pi

(PolSHES JOU JUIRHSU0D) S ove
[

paysnes 0840 JUIEASUDD LN .
WIBASUOD xomcomu\ , e Eh e famiis
9¢¢ "A s|qe1 Alanp gve
| 1« i
J001-G, 01 %00 gy Isenbay
“ " _m o
JO0FS, 0} 400} Y HBAUO
_ _ [eSS oy 2 Zpe
} | } (ssaocans) |
14 — 6€¢
i } 99 t - 8¢¢
| | S (;58000N8, =} P09 Joua) 7
| | m 3p0D %20 slen|eas
| _ V- 9t — i
|]] 2pO2 320 WINeY i Zie
!] [« i
M00|-X, UE Se YO0} i jsenbey
| | OLe — !
“ “ m\ 00| gV PBiesoly . 80¢
U uoneosiie X0 gy 1senbey !
! _ 908 — N
| } } A0 ¥ P8lesOly ~ +0¢
! ! e .
ED0}E %J0] ¥ j1eonboy 1
€08 1 | _ J
SUIBIISU0D 1UBWIBDIOJUS JUIEASUOD JSanbey | i w_
AIIOE 900N < L3 Loe i]
20¢ _>A>8 ajEpIpURY JO LIoISSE 1senbay _ | |
e 75 oo ECL ou3
UOWBIoMT
1abeuepy ajqe |, suoneoyddy JaBeuepy 3007 WIBASUO?)

00ge

US 9,384,228 B2

Sheet 6 of 10

Jul. §5,2016

U.S. Patent

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
A

o€ 'OId

€ "Old|

\“l 8.L€

A

MOJ Ussu}

JREEYL

T T T A

o VE "Ol4 01 pesooid usyl SO0} [je oseajay (InNosuwl), =| apoo JOUd)

19¢

{(incawp) |

MO0}, UB SE X20| gY jsenbay |

LZA%

BP0 %20} SjenieAd

2p0OD H004 WMy

A T i

uopdaoxa asiey

(ynosui, ,=j 8poo Jous)

| 2P0 %00} Sjeniead

M00[S, Ue SB %O0| y Jsanbay !

viLe N gie R
_\ SP0D YOO} WInjaY . FARS
™~ 1
MO0I-Y, U SE 300| ¥ }8anbay
oLe N R
m\ 0] gy PBIEIoHY . g0¢
T uoneooje oo| gy Isenbey !
_\ 300 ¥ paieoctiy L voe
£0¢ “A UOHBOO|@ %00| ¥ 15anbay M
SIUIBISUOD uswesloue JUBRSUCD jsanbay L0S i _
SAIIE SO0ON P L] i]
20¢ _>A>o._ 2jepipued JO uoIesul jsenbay _ | _
— —— J— aubu
3¢ 8¢ 08¢ umwﬁwmeﬂcw
\4 1abeuepy ajge | suogeatjddy 1abeueiy %907
000¢ UIBHSUOD

U.S. Patent

400

Jul. §5,2016

Sheet 7 of 10

(" coarr)

US 9,384,228 B2

»{ START)¢

*allocate two unique locks AHandle/ABHandle */
ALLOCATE _UNIQUE('ORAS ‘ficolumnA_value, AHandle);, L_— 404
ALLOCATE_UNIQUE('ORAS_[lcohsmnB_value |}
columnA_value, ABHandle);
406
l Sieep 2s 402
Dead Lock Request an
X mode
lockCode=2 Ahandle lock?
| | i
lackCode=4 lockCode=0 lockCode=1
Already own lock 410 Suiess 412 Time out 414
Query table to Convert AHandle
see if current insertion to shared mode Request a shared
breaks constraint? lock for AHandle
from X mode
418 420
I 422

Raise an exception

J

Request a shared
{ock for ABHandie

h 4

X mode ABHandie

Deadlock
Success

Request an

lock?

\ END €

FIG. 4

42
¢ 428 430
4 S \ 4
i t Query table to Request a shared Release all
nsert row see if current insertion tock for ABHandie locks
pbreaks constraini?
436 438 440 S
\ wvNo Yes f v / 432
Insert row Release all locks insert row
and raise an
exception
Yy Y »f \

U.S. Patent Jul. 5, 2016 Sheet 8 of 10 US 9,384,228 B2

500
AW (START)

h 4

Receive a description of multi-column/multi-row | _— 502

constraint test referencing at least two constraint
columns

v

Receive subject table having at one table row and

a plurality of columns, at least two of the plurality " 504

of columns being the at least two constraint
columns

v

Receive a candidate insertion row having values | _—~ 506
in the two or more constraint columns selected
from the plurality of columns

v

Secure locks to ensure exclusive write access

L 508

A 4
Perform the constraint test on the two or more
constraint columns over the at least one table row~" 510
and the candidate insertion row

512

Constraint
Test
passed?

\ \ 4 \ 4 /

Do not perform the insertion.
Raise an exception.

Yes

514 516

Perform the insertion.

Release locks — 518

FIG. 5

U.S. Patent Jul. 5, 2016 Sheet 9 of 10 US 9,384,228 B2

600

4 ™
A computer processor.to exec_:ute a set of program code L~ 610
instructions
\. J
4 A

Program code for receiving a first row to be inserted into

605\ <«—| the existing relational database table, the first row having at [~ 620
least two constrained columns corresponding to the multi-
column/multi-row constraint

\ Y,

4 I
Program code for preventing conflicting access grants to
<« the at least two constrained columns of the existing

relational database table
_ Y,

L~ 630

(Program code for evaluating the multi-column/muiti-row)
constraint, the evaluation using at least the first row to be
inserted and at least one row of the existing relational

database table
\ v,

— 640
[—

Program code for inserting the first row into the existing 650
relational database table when the multi-column/multi-row
constraint is satisfied

[——

FIG. 6

US 9,384,228 B2

Sheet 10 of 10

Jul. §5,2016

U.S. Patent

Ui SUOHEDILNLULLICT)

GiL

¥

L 'Old

el
asegejeq

I

—
™
N

=

<

wQMNE_ Amromoe soe m eje

SUOEIUNWILIOD d He| Bleg

A A A

A A r

90/ sng

A A A

\ 4 A 4 A 4

o1z 607 807
aolneq abeioig NoY Aowapy uiepy

F4YA
201A8(g
nduj

US 9,384,228 B2

1
IMPLEMENTING A
MULTI-COLUMN/MULTI-ROW
CONSTRAINT IN A RELATIONAL DATABASE
TABLE

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD

The disclosure relates to the field of relational database
systems and more particularly to techniques for implement-
ing a multi-column/multi-row constraint when inserting rows
into a relational database table.

BACKGROUND

Tables comprised of columns and rows have long been
used in relational database systems. Improvements deriving
from deployments of relational database systems have intro-
duced the notion of constraints into the definition and usage of
tables. In legacy systems a table might be constructed of rows
of data where each row is comprised of several columns, and
each column might be defined to represent certain data val-
ues. Further, the values in a column might be constrained
(e.g., using some form of a given column constraint) such that
the values in the given column conform to the given con-
straint. As an example, the values in a column might be
constrained such that no value in that column can be “null”.
Other column-wise constraints are present in legacy systems,
such as enforcement that a value in a column must be a valid
number, or must be a valid date, etc. Moreover some con-
straints operate over multiple columns in order to enforce the
constraint. For example, a multi-column constraint can be
described as, “column A must be bigger than column B”.
Other constraints involve row constraints in the form of
enforcing the constraint over multiple rows. For example,
constraints called UNIQUE constraints are used to make sure
that no two rows have identically the same values in specific
columns. In certain situations, it is desired to define a relation
that conforms concurrently to both a set of column constraints
as well as to a set of row constraints. And, it is desirable to
implement such multi-column/multi-row constraints in an
efficient manner. In legacy systems, there are no constraints
available that operate concurrently on multiple columns and
multiple rows in order to enforce such a multi-column/multi-
row constraint.

What is needed are techniques to define and implement
multi-column/multi-row constraints in an efficient manner.
The deficiency in legacy systems (e.g., the lack of efficient
relation constraints that operate concurrently on multiple col-
umns and multiple rows in order to enforce the multi-column/
multi-row constraint) is further exacerbated when consider-
ing that in an enterprise setting, multiple applications being
used by multiple users can operate on the tables concurrently,
and thus, what’s needed are techniques to handle row inser-
tion requests from multiple concurrently executing processes
while still enforcing the validity of the row insertions under
the regime of a multi-column/multi-row constraint. More-
over, none of the aforementioned technologies have the capa-

10

15

20

25

30

35

40

45

50

55

60

65

2

bilities to perform the herein-disclosed high-performance
(e.g., minimally-blocking) techniques for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table. Therefore, there is a need for
improved approaches, some of which approaches are dis-
closed hereunder.

SUMMARY

The present disclosure provides an improved method, sys-
tem, and computer program product suited to address the
aforementioned issues with legacy approaches. More specifi-
cally, the present disclosure provides a detailed description of
techniques used in methods, systems, and computer program
products for implementing a multi-column/multi-row con-
straint when inserting rows into a relational database table.

A method, system, and computer program product for
implementing a multi-column/multi-row constraint. Lock
techniques prevent access collisions even when two or more
concurrently running software applications are attempting to
insert rows into the same relational database table (subject to
the same multi-column/multi-row constraints). The method
commences by receiving (e.g., from a first process) a first row
to be inserted into a relational database table where the row
comprises at least two constrained columns corresponding to
the multi-column/multi-row constraint, then receiving (e.g.,
from a second process) a second row to be inserted into the
same table. Using column locks, the method recognizes the
potential for conflicting row insertions, and manages locks to
prevent conflicting access grants to the two constrained col-
umns of the existing database table. The evaluation of the
multi-column/multi-row constraint is performed over the first
row to be inserted and a row or rows of the relational database
table.

Some embodiments prevent conflicting access grants by
denying access grants when values of the constrained col-
umns of the first row are different from the values of the
constrained columns of the second row. Some embodiments
reduce or eliminate processing delays by allowing non-block-
ing access grants when values of the constrained columns of
the first row do not differ from the values of the constrained
columns of the second row.

Further details of aspects, objectives, and advantages of the
disclosure are described below in the detailed description,
drawings, and claims. Both the foregoing general description
of the background and the following detailed description are
exemplary and explanatory, and are not intended to be limit-
ing as to the scope of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts a rejection case data flow through a con-
straint enforcement engine used for implementing a multi-
column/multi-row constraint when inserting rows into a rela-
tional database table, according to some embodiments.

FIG. 1B depicts an insertion case data flow through a
constraint enforcement engine used for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table, according to some embodiments.

FIG. 2 depicts a constraint-type matrix used in systems for
implementing a multi-column/multi-row constraint when
inserting rows into a relational database table, according to
some embodiments.

FIG. 3A depicts a first portion of a message protocol based
on lock status when used in a system for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table, according to some embodiments.

US 9,384,228 B2

3

FIG. 3B depicts a second portion of a message protocol
based on lock status when used in a system for implementing
a multi-column/multi-row constraint when inserting rows
into a relational database table, according to some embodi-
ments.

FIG. 3C depicts a third portion of a message protocol based
on lock status when used in a system for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table, according to some embodiments.

FIG. 4 is a flow chart used in a system for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table, according to some embodiments.

FIG. 5 exemplifies row insertion activity based on lock
status as used in a system for implementing a multi-column/
multi-row constraint when inserting rows into a relational
database table, according to some embodiments.

FIG. 6 is a system implementing a multi-column/multi-row
constraint when inserting rows into a relational database
table, according to some embodiments.

FIG. 7 depicts ablock diagram of an instance of a computer
system suitable for implementing an embodiment of the
present disclosure.

DETAILED DESCRIPTION

Some embodiments of the present disclosure address the
problems attendant to implementing a multi-column/multi-
row constraint when inserting rows into a relational database
table. Some embodiments are directed to a highly-efficient
and minimally-blocking approach that deals with concur-
rency issues when inserting rows into a relational database
table that implements a multi-column/multi-row constraint.
Overview

Modern relational database systems implement various
types of constraints that are defined to aid in maintaining
consistency of the data stored in the tables. There are con-
straints that apply over multiple columns, and there are con-
straints that perform multiple rows tests, but legacy systems
do not provide any multi-column/multi-row constraints.

What is needed are solutions for efficiently implementing
multi-column/multi-row constraints. A sample multi-col-
umn/row table constraint as defined in the following:

Consider a table (column0, . . ., columnA, columnB, . . .
columnN) that has two string columns: columnA and col-
umnB. Now, further consider a constraint such that:

For any two rows {row1, row2} in the table:

If the value of columnA of rowl is equal to the value of

columnA of row2 then

the value of columnB of row 1 must be equal to the value of

columnB of row2

This constraint is distinguished from legacy constraints, at
least in the aspect that it enforces a relationship that is defined
as being between multiple rows and between multiple col-
umns. Following is an example table for elucidating the
effects of this multi-column/multi-row constraint. Table 1
lists members (e.g., see the Member column) and records
their respective birthplace (e.g., see the Birthplace column)
and Witnesses of the birth in the same row.

TABLE 1

Birthplace and Witnesses for Family Members

Family
Row Member Birthplace Witnesses Comment
1 Scott USA Father <= valid row
2 Scott USA Midwife <= valid row

10

15

20

25

30

35

45

50

55

60

65

4
TABLE 1-continued

Birthplace and Witnesses for Family Members

Family
Row Member Birthplace Witnesses Comment
3 Herman China Doctor <= valid row
4 Herman China Midwife <=wvalid row
5 Scott Ttaly Doctor <= invalid row, because it

conflicts with row 1 and row 2.

Reading the table from top to bottom then, Scott was born
in the USA, and Scott’s father and a midwife were also
present. Herman was born in China and a doctor and a mid-
wife were also present. The foregoing is captured in the first
four data rows of Table 1.

Now, consider the meaning of a needed constraint: There
might have also been a doctor present at Scott’s birth, and
such a row (not shown) could be added. However, it is not
possible that Scott was born in the USA and also was born in
Italy. Entering a row as depicted in the bottom row of Table 1
would violate the meaning of the needed constraint, and some
sort of a constraint violation should be raised when this con-
straint is active. Now, it is possible that there is indeed a Scott
born in Italy, however the constraint ensures that the Scott
from Italy should be entered as a different person distin-
guished from the Scott from the USA. Or, it might have been
the case that the constraint violation would be raised because
of a coding or a typographical error—perhaps that the row
should reflect that birth of Scott from the USA was also
witnessed by a doctor.

Enforcing such a multi-column/multi-row constraint can
be performed whenever a process requests an insert of a new
row into a table to which the constraint applies. And, serial-
ized enforcement can be performed in an environment with
many concurrently running process by blocking a second
process from modifying the table until the constraint has been
tested/satisfied and the row has been entered. Yet, there are
techniques to reduce the performance impact of serialized
enforcement.

The figures and descriptions below cover:

Techniques to prevent “invalid” rows from being inserting

into the table; and

Techniques to allow concurrent insertion for all rows that
could not affect the validity of the constraint enforce-
ment steps.

More specifically, the figures and descriptions below

cover:

Certain techniques to prevent “invalid” rows from being
inserting into the table by checking the columns and
rows just before insertion; and

Techniques to allow concurrent insertion for all rows that
could not affect the validity of the constraint enforce-
ment steps by checking that a candidate row does not
have invalid values in either of the columns involved in
the multi-column/multi-row constraint.

DEFINITIONS

Some of the terms used in this description are defined
below for easy reference. The presented terms and their
respective definitions are not rigidly restricted to these defi-
nitions—a term may be further defined by the term’s use
within this disclosure.

The term “exemplary” is used herein to mean serving as an

example, instance, or illustration. Any aspect or design
described herein as “exemplary” is not necessarily to be

US 9,384,228 B2

5

construed as preferred or advantageous over other
aspects or designs. Rather, use of the word exemplary is
intended to present concepts in a concrete fashion.

As used in this application and the appended claims, the
term “or” is intended to mean an inclusive “or” rather
than an exclusive “or”. That is, unless specified other-
wise, or is clear from the context, “X employs A or B” is
intended to mean any of the natural inclusive permuta-
tions. That is, if X employs A, X employs B, or X
employs both A and B, then “X employs A or B” is
satisfied under any of the foregoing instances.

The articles “a” and “an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or is clear from
the context to be directed to a singular form.

Reference is now made in detail to certain embodiments.

The disclosed embodiments are not intended to be limiting of
the claims.

DESCRIPTIONS OF EXEMPLARY
EMBODIMENTS

FIG. 1A depicts a rejection case data flow 1A00 through a
constraint enforcement engine used for implementing a
multi-column/multi-row constraint when inserting rows into
arelational database table. As an option, the present rejection
case data flow 1A00 may be implemented in the context of the
architecture and functionality of the embodiments described
herein. Also, the rejection case data flow 1A00 or any aspect
therein may be implemented in any desired environment.

As shown, the relation 102 comprises three columns and
four data rows. The state of table at time T=T,, is shown in the
upper left portion of FIG. 1A. Also depicted is a row that is
intended to be inserted (e.g., candidate insertion row 104,,).
Both the relation 102 and the row that is intended to be
inserted are accessed by a constraint enforcement engine 103.
The constraint enforcement engine may communicate with
other components in a system, and the constraint enforcement
engine may in turn comprise a multi-column constraint
engine 106, a multi-row constraint engine 108, and a multi-
column/multi-row constraint engine 110. Given the shown
relation 102 and given the candidate insertion row 104, the
constraint enforcement engine 103 performs constraint
checks. For example, and as shown, a multi-column con-
straint engine 106 checks if any multi-column/single-row
constraints would be violated by the insertion. In this case
there are no multi-column/single-row constraints active that
would be violated by the insertion, so the multi-column con-
straint engine 106 reports “OK” at time T=T,. As another
example, and as shown, a multi-row constraint engine 108
checks if any multi-row/single-column constraints would be
violated by the insertion. In this case there are no multi-row/
single-column constraints active that would violated by the
insertion, so the multi-row constraint engine 108 reports
“OK” at time T=T,.

In the situation that a multi-column/multi-row constraint is
active for the relation, a multi-column/multi-row constraint
engine 110 might determine (as shown) that the candidate
insertion row 104, (Scott, Italy, Father) would violate an
active multi-column/multi-row constraint, then the insertion
would be rejected (e.g., see the “X” at time T=T}).

The foregoing is an example where the requested insertion
of'a candidate insertion row is rejected. It is also possible that
the requested insertion of a candidate insertion row is pro-
cessed, found to conform to the constraint, and is then
inserted into the table. For example, there would not be such

20

25

30

35

40

45

6
a conflict for a candidate insertion row presented as (Scott,
USA, Doctor). Such a case is shown in FIG. 1B.

FIG. 1B depicts an insertion case data flow 1B00 through a
constraint enforcement engine used for implementing a
multi-column/multi-row constraint when inserting rows into
a relational database table. As an option, the present insertion
case data flow 1B00 may be implemented in the context of the
architecture and functionality of the embodiments described
herein. Also, the insertion case data flow 1B00 or any aspect
therein may be implemented in any desired environment.

As shown, there are several rows (e.g., corresponding to
several respective concurrent processes) that are intended to
be inserted, shown as candidate insertion row 104, candidate
insertion row 104, and candidate insertion row 104,,.

The relation 102 and the candidate insertion rows are
accessed by a constraint enforcement engine. Given the
shown relation 102 and given the candidate insertion rows the
constraint enforcement engine 103 performs constraint
checks. For example, and as shown, a multi-column con-
straint engine 106 checks if any multi-column/single-row
constraints would be violated by the requested insertions. In
this case there are no multi-column/single-row constraints
active that would violated by the insertion, so the multi-
column constraint engine 106 reports “OK” at time T=T . As
another example, and as shown, a multi-row constraint engine
108 checks if any multi-row/single-column constraints would
be violated by the insertion. In this case there are no multi-
row/single-column constraints active that would violated by
the insertion, so the multi-row constraint engine 108 reports
“OK” at time T=T,.

In the situation that a multi-column/multi-row constraint is
active for the relation, a multi-column/multi-row constraint
engine 110 might determine (as shown) that inserting the
candidate insertion row would not violate any active multi-
column/multi-row constraints (e.g., see the “OK” at time
T=T},), then the insertion into the table is performed and the
relation 102 is modified by the insertion of candidate inser-
tion row 104, to form relation 112, as shown at T=T,.

The foregoing describes an example where the requested
insertion of a candidate insertion row 104, is performed (after
checking the active constraints). It is also possible that there
are more candidate insertion rows that may or may not satisfy
the multi-column/multi-row constraints. It is further possible
that, unless safeguards are in place (e.g., a column locking
mechanism) a candidate insertion row from one process can
alter the table over which the multi-column/multi-row con-
straint is to be processed.

The further discussions herein describe forms of safe-
guards that can be put into place within systems for imple-
menting multi-column/multi-row constraints when inserting
rows into a relational database table.

As earlier depicted, a particular table might hold con-
straints of various types, all of which constraint types can be
enforced for any candidate insertion. Some of the possibilities
of constraints of various types are shown in FIG. 2 and dis-
cussed below.

FIG. 2 depicts a constraint-type matrix 200 used in systems
for implementing a multi-column/multi-row constraint when
inserting rows into a relational database table. As an option,
the present constraint-type matrix 200 may be implemented
in the context of the architecture and functionality of the
embodiments described herein. Also, the constraint-type
matrix 200 or any aspect therein may be implemented in any
desired environment.

US 9,384,228 B2

7

As shown, the constraint-type matrix 200 distinguishes
multi-column/multi-row constraints from constraints that
operate over one or multiple columns (within a single row) or
over multiple rows.

More specifically, the constraint-type matrix shows possi-
bilities for constraints, namely:

single-column constraint;

multi-column constraint;

multi-row constraint;

multi-column and multi-row constraints.

As earlier indicated, database systems often provide a
number of different constraints to ensure the data conforms to
specific constraints or requirements. Strictly as examples,
these include:

Check: The check constraint allows specification based on

a condition over a row in a table.

NOT NULL: The NOT NULL constraint enforces a col-
umn to not accept NULL, values.

Primary key: The primary key defines a column or combi-
nation of columns that contain values that uniquely iden-
tify each row in the table.

Unique: The UNIQUE constraints ensure that no duplicate
values are entered in specific columns.

Foreign key; and

Others.

Yet, any application of any or all of the above constraints,
even in any possible combination, the foregoing types of
constraints are still insufficient to implement the needed
multi-column/multi-row table constraint. Moreover, in the
presence of concurrently running processes (e.g., software
applications), it is desired to provide an efficient means of
preventing conflicting access grants to the constrained col-
umns of the existing relational database table (e.g., preventing
conflicting access grants during the critical region when the
multi-column/multi-row constraint is being evaluated).

Strictly to illustrate, the intra-table constraints examples
210 given in the patterned portion of the matrix of FIG. 2 (e.g.,
legal column value constraint example 220, non-null values
constraint example 230, unique column values constraint
example 240, and IF/THEN constraint example 250) are not
sufficient to implement the needed multi-column/multi-row
table constraint (e.g., multi-column/multi-row constraints
260). Thus the multi-column/multi-row table constraint is
needed, and is defined as disclosed herein, and can be imple-
mented in various embodiments, as discussed.

FIG. 3A depicts a first portion of a message protocol 3A00
based on lock status when used in a system for implementing
a multi-column/multi-row constraint when inserting rows
into a relational database table. As an option, the present
message protocol 3A00 may be implemented in the context of
the architecture and functionality of the embodiments
described herein. Also, the message protocol 3A00 or any
aspect therein may be implemented in any desired environ-
ment.

As shown, software applications 382 make requests to
insert a row into a table (see message 301), and some opera-
tional unit, in this case a table manager 384 looks-up or
otherwise takes notice of the constraints that apply to the table
(see operation 302). And in the instance shown, the table
manager 384 sends a request (see message 303) to a constraint
enforcement engine 103. In the example shown, at least the
definitions of the two columns {columnA, columnB} pertain-
ing to the multi-column/multi-row constraint covering the
given row are accessible by the constraint enforcement
engine 103.

Next, the constraint enforcement engine 103 allocates two
shared access locks (e.g., “S locks)”, one for the columnA

10

25

30

40

45

65

8

value and one for the columnB value (e.g., see message 304
and see message 308). The lock manager 380 may satisfy the
allocation requests (e.g., see message 306 and message 310),
at which point the constraint enforcement engine 103 can
request an exclusive mode lock (e.g., an “X-lock™) on the
columnA value (e.g., see message 312). The lock manager
processes the request for an exclusive mode lock, and returns
alock code (see message 314). The status or value of the lock
code is used to determine aspects of the then instantaneous
concurrency, and the status or value of the lock code is used to
determine next operations. Some exemplary next operations
are discussed below, and further exemplary next operations
are discussed in FIG. 3B and FIG. 3C.

The status or value of the lock code has various meanings,
which meanings are used to determine next operations. As
shown, the lock manager returns a lock code (see message
314) which is evaluated (see operation 316) by the constraint
enforcement engine.

Strictly as an example, a lock manager might implement a
lock request as follows:

Synopsis
DBMS_LOCK.REQUEST(
id IN INTEGER,
lockhandle IN VARCHAR2,
lockmode IN INTEGER DEFAULT X_MODE,
timeout IN INTEGER DEFAULT MAXWAIT,
release__on__commit IN BOOLEAN DEFAULT FALSE)
RETURN INTEGER;
TABLE 2
Table Title
Return Value
(Integer values) Description
Success
Timeout
Deadlock

Parameter error
Owned: Already owns lock specified
Illegal lock handle

WA W= O

Continuing with the description of the message protocol
3A00, a test (e.g., see test 318) can direct the progression
through the protocol using one or another selected sequence.
In this case if the test 318 determines that the lock code was
‘owned’ (see branch 322), then the protocol progresses to
query the table (see message 324) or if the test 318 determines
that the lock code was not ‘owned’ (see branch 320), process-
ing progress to a different portion of the protocol (e.g., see
connector to FIG. 3B).

The operation to query the table sends a message (see
message 324) to a table manager 384, which in turn checks if
the constraint is satisfied (see operation 326). Note that the
locks of the requested lock types are still in-use and opera-
tional (e.g., have not been released), so constraint checks
performed by the table manager can proceed under the
assumption that no intervening writes affecting the con-
strained columns can occur during the performance of the
constraint checks; thus the constraint checks are performed
within a safe critical region.

The table manager 384 returns results of the constraint
checks (see message 328), and the progression through the
protocol is responsive to the results of the constraint checks.
As shown in this portion of message protocol 3A00, the

US 9,384,228 B2

9

multi-column/multi-row constraint is satisfied (see decision
332) and a message to insert the candidate rows into the table
is delivered to the table manager (see message 334).

In an alternative situation, and as shown in this portion of
message protocol 3A00, the multi-column/multi-row con-
straint is not satisfied (see message 328 and decision 332) and
an access exception is raised to the caller (see message 330).

The particular assignment of operations and the particular
sender/receiver relationships, and the particular names of the
operational units (e.g., software application, table manager,
lock manager, and constraint enforcement engine 103) are
discussed here purely as examples, and the particular assign-
ment of operations and the particular sender/receiver relation-
ships may differ from implementation to implementation.

The foregoing describes one embodiment for enforcing a
constraint in the case of a single application, or in the case of
serialized insertion requests. As can be understood, in a seri-
alized or non-concurrent transaction environment, a query to
the table can confidently deem if a candidate insertion breaks
the constraint or not, since all previous changes in the trans-
action are visible to all later actions.

However, in a concurrent environment that supports mul-
tiple applications or other techniques for processing multiple
transactions concurrently, the aforementioned semaphore or
other forms of a lock can be used to prevent multiple READ/
WRITE accesses in critical regions—even in the presence of
interleaved transactions.

Strictly as an example, consider the case when there are
two concurrent transactions: transactionA and transactionB,
any insertion made by transactionA are not visible to trans-
actionB before transactionA commits its changes to the table
manager. Unless certain preventive steps are taken (e.g., see
FIG. 3B, FIG. 3C, and FIG. 4), if transactionB includes inser-
tion of a new row that involves either of the columns named in
the multi-column/multi-row constraint, the processing of
transactionB can’t be confident as to whether or not the new
row violates the constraint until transactionA commits and
the committed changes are made available to the table man-
ager. Examples of preventive steps to be taken and under what
conditions (e.g., responsive to lock status) are discussed
briefly below.

FIG. 3B depicts a second portion of a message protocol
3B00 based on lock status when used in a system for imple-
menting a multi-column/multi-row constraint when inserting
rows into a relational database table. As an option, the present
message protocol 3B00 may be implemented in the context of
the architecture and functionality of the embodiments
described herein. Also, the message protocol 3B00 or any
aspect therein may be implemented in any desired environ-
ment.

As shown, and as earlier-described in the discussion of
FIG. 3A, a software application (e.g., one of software appli-
cations 382) makes a request to insert a row into a table (see
message 301), and some operational unit, in this case a table
manager 384, looks-up or otherwise takes notice of the con-
straints that apply to the table. And, as shown, the table
manager 384 sends a request to a constraint enforcement
engine 103. In this example, at least the definitions of the two
columns pertaining to the multi-column/multi-row constraint
covering the given row are accessible by the constraint
enforcement engine 103.

The protocol continues after evaluating the returned lock
code (see operation 316). In the case shown, the decision
responsive to the lock code return value being other than
“success” (see decision 338) directs the protocol processing
to steps shown in FIG. 3C. Or, the decision responsive to the
lock code return value being “success” (see branch 342)

10

15

20

25

30

35

40

45

50

55

60

65

10

directs the protocol processing to steps for conversion of the
columnA value lock to a shared lock (see message 344), and
to request a shared lock for the {columnA value, columnB
value} (see message 346).

Having the requested locks, then in order to query the table
the constraint enforcement engine 103 sends a message (see
message 324) to a table manager 384, which in turn checks if
the constraint is satisfied. The table manager 384 returns
results of the constraint checks (see message 328), and the
progression through the protocol is responsive to the result of
the constraint check. As shown in this portion of message
protocol 3B00, the multi-column/multi-row constraint is sat-
isfied (see decision 332) and a message to insert the candidate
rows into the table is delivered to the table manager (see
message 334).

In an alternative situation, and as shown in this portion of
message protocol 3B00 the multi-column/multi-row con-
straint is not satisfied (see decision 332) constraint enforce-
ment engine processing releases all ifits allocated locks from
this pass and an exception is raised to the caller (see message
340).

FIG. 3C depicts a third portion of a message protocol 3C00
based on lock status when used in a system for implementing
a multi-column/multi-row constraint when inserting rows
into a relational database table. As an option, the present
message protocol 3C00 may be implemented in the context of
the architecture and functionality of the embodiments
described herein. Also, the message protocol 3C00 or any
aspect therein may be implemented in any desired environ-
ment.

As shown, and as earlier-described in the discussion of
FIG. 3 A, software applications (e.g., any number of instances
of software applications 382) make requests to insert a row
into a table (see message 301), and some operational unit, in
this case a table manager 384 looks-up or otherwise takes
notice of the constraints that apply to the table. And in the
instance shown, the table manager 384 sends a request to a
constraint enforcement engine 103. In the example shown, at
least the definitions of the two columns pertaining to the
multi-column/multi-row constraint covering the given row
are accessible by the constraint enforcement engine 103.

At some point, the protocol continues after evaluating the
returned lock code (see message 314). In the case shown, the
decision responsive to the lock code return value being other
than “timeout” (see decision 368) directs the protocol pro-
cessing (e.g., see branch 339) to raise an exception (e.g., in the
calling instance from among the software applications 382).
Or, the decision responsive to the lock code return value being
“timeout” (see decision 368) can direct the protocol process-
ing to steps for requesting a first column shared lock (see
message 364), and to evaluate the returned lock code (see
operation 367).

Again, a decision responsive to the lock code return value
being other than “timeout” (see decision 370) directs the
protocol processing to release all locks (see branch 372). Or,
the decision responsive to the lock code return value being
“timeout” (see decision 370) directs the protocol processing
via branch 374 to request an AB shared lock (see message
376), and the row is inserted (see message 378).

Again, the particular assignment of operations and the
particular sender/receiver relationships, and the particular
names of the operational units (e.g., software application,
table manager, lock manager, constraint enforcement engine
103) are discussed here purely as examples, and the particular
assignment of operations and the particular sender/receiver
relationships may differ from implementation to implemen-
tation. In particular, a set of operations and decisions can be

US 9,384,228 B2

11

amalgamated into a single flow chart to aid understanding of
an exemplary embodiment. Such a flow chart is presented in
FIG. 4, and discussed in further detail hereunder.

FIG. 4 is a flow chart 400 used in a system for implement-
ing a multi-column/multi-row constraint when inserting rows
into a relational database table. As an option, the present flow
chart 400 may be implemented in the context of the architec-
ture and functionality of the embodiments described herein.
Also, the flow chart 400 or any aspect therein may be imple-
mented in any desired environment.

As earlier mentioned, some of the embodiments herein
include techniques to prevent “invalid” rows from being
inserted into the table by checking the columns and rows just
before insertion. Still further, the use of locks as discussed in
this FIG. 4 serves the dual purposes of preventing invalid rows
from being inserting into the table while reducing or elimi-
nating serialization when it can be determined that a candi-
date insertion row could not possibly affect the validity of the
constraint enforcement steps (e.g., by checking that a candi-
date row does not write conflicting value in either of the
columns involved in the multi-column/multi-row constraint).

In dealing with these dual purposes, consider concurrent or
nearly concurrent transactions, namely transactionA and
transactionB, that each intend to insert a row that is subject to
a multi-column/multi-row constraint. Consider the following
situation:

In a concurrent environment, for example, there can occur

concurrent transactions transactionA and transactionB.

Any insertion made by transactionA would not be visible to
transactionB before transactionA commits. So if trans-
actionB wants to insert a new row, it can’t know whether
or not the new row would violate the constraint until
transactionA commits.

If transactionB is allowed to insert the new row, then after
both transactions commit, there might then be conflicted
rows in the table, which would violate the constraint.
This situation is to be prevented.

IftransactionB holds its action until transactionA commits,
but if it happens that there are no conflicted rows in
transactionA and transactionB, then the performance
suffers because all transactions run sequentially, and no
concurrent insertions are allowed in this situation. This
situation is to be prevented.

The foregoing paragraphs have introduced a lock regime,
enforced by a lock manager where a particular type of lock
request is processed and returns one of six different return
types. Exemplary calls and their meanings are detailed as
follows:

In an allocation call (e.g., ALLOCATE_UNIQUE), a first
lock name/handle is uniquely created corresponding to
the value of columnA. If a transaction holds this lock, it
means this transaction has inserted a row with this spe-
cific columnA value, and the insertion is not committed
yet.

Inasecondallocation call (e.g., ALLOCATE_UNIQUE), a
second lock name/handle is uniquely created with both
values of columnA and columnB. If a transaction owns
this lock, it means this transaction has inserted a row
with this specific pair {columnA value, columnB
value}, and the insertion is not committed yet.

If any two transactions insert rows with the same columnA
value (or a same columnA value and columnB value
pair), they will contend for the same lock, because func-
tion ALLOCATE_UNIQUE returns the same lock
handle for the same lock names.

By calling the two locks defined above (e.g., by calling the

routine ALLOCATE_UNIQUE), a transaction can indirectly

10

20

40

45

60

65

12

detect if other transactions are working on the same colum-
nA_value or are working on the same columnA_value/col-
umnB_value pair. For example:

Ifatransaction can successfully acquire an exclusive mode
lock on a specific columnA_value, that means no other open
transactions are working on the same value of columnA. So
for the current transaction, it just needs to query the table to
see if the new row breaks the constraint, and then raises an
exception (in the case of an invalid row) or makes the inser-
tion into the table (in the case of a valid row insertion).

If a transaction can’t successfully acquire an exclusive
mode lock on a specific columnA_value, that means another
open transaction is holding the lock, and is also in the process
of inserting a row with same columnA_value.

Besides providing the aforementioned indirect communi-
cation mechanism, different modes (e.g., exclusive ‘X-lock’
and shared ‘S-lock’) of these two locks are also used to
distinguish different situations and to coordinate row inser-
tions among concurrent transactions.

As shown, the flow commences at START, upon which
commencement two locks are allocated, namely, a lock allo-
cation for {columnA value} and a lock allocation for the
{columnA value, columnB value}, as depicted in step 404.
Then the flow requests an exclusive mode lock for the A
column, and the flow receives a response resulting from the
exclusive mode lock request. Responsive to the exclusive
mode lock request, one of two paths are taken (see binary
decision 406). In one case, the exclusive mode lock request
results in a deadlock, in which case the flow will sleep the
requesting process for a duration (see operation 402) by post-
ing a wait event and will attempt the allocation again after the
sleep time expiration. In another case, after the binary deci-
sion 406, one of three flows is selected (e.g., flow through
decision 410, flow through operation 412 or flow through
operation 414, the selection being responsive to the lock code
resulting from the exclusive mode lock request. The shown
three flows correspond one-to-one to the value of the lock
code resulting from the exclusive mode lock request. In this
example:

lock code=‘already own the requested lock’:

This situation reflects existence of an exclusive lock for the
needed critical region to check the constraints and if OK
(see decision 410) the insert the row (see operation 426).
Thus, insert the row if the constraint is satisfied. Other-
wise raise an exception (see operation 418) or otherwise
alert the caller that the row violates the multi-column/
multi-row constraint.

lock code=‘success’:

Convert the exclusive lock into a shared lock (see operation
412) to allow other processes to perform certain inter-
vening operations, and request a shared AB lock (see
operation 420) then if the constraint is satisfied (see
decision 428) insert the row (see operation 436). Other-
wise raise an exception (see operation 438) or otherwise
alert the caller that the row violates the multi-column/
multi-row constraint.

lock code=‘timeout:

This situation can arise when other processes are writing to
the table. Processing in this branch includes (i) request-
ing a shared A lock for (see operation 414) (ii) requesting
an exclusive mode AB lock, and recognizing the (pos-
sible) existence of a (temporary) deadlock (see decision
422), then (iii) releasing previously secured locks (see
operation 432), and (vi) beginning anew from START. In
the event that after requesting an exclusive mode AB
lock, the request times-out, then requesting a shared AB

US 9,384,228 B2

13

lock (see decision 422 and operation 430), then inserting
the row (see operation 440).

FIG. 5 exemplifies row insertion activity 500 based on lock
status as used in a system for implementing a multi-column/
multi-row constraint when inserting rows into a relational
database table. As an option, the present row insertion activity
500 may be implemented in the context of the architecture
and functionality of the embodiments described herein. Also,
the row insertion activity 500 or any aspect therein may be
implemented in any desired environment.

As shown, the activity 500 commences upon receiving a
description of a multi-column/multi-row constraint test ref-
erencing at least two constraint columns (see operation 502);
receiving a subject table having at least two rows that include
the at least two constraint columns (see operation 504);
receiving a candidate insertion row having values in the at
least two constraint columns (see operation 506); secure
locks to ensure exclusive write access (see operation 508);
perform the constraint test on the two or more constraint
columns over the at least two rows (see operation 510); deter-
mine if the constraint test passed (see decision 512); then:

do not perform the insertion and raise an exception if the

constraint test did not pass (see operation 514); or
perform the insertion if the constraint test had passed (see
operation 516).
Release locks to end activity 500 (see operation 518).

Additional Embodiments of the Disclosure

FIG. 6 is a system for implementing a multi-column/multi-
row constraint when inserting rows into a relational database
table, according to some embodiments. As an option, the
present system 600 may be implemented in the context of the
architecture and functionality of the embodiments described
herein. Of course, however, the system 600 or any operation
therein may be carried out in any desired environment. As
shown, system 600 comprises at least one processor and at
least one memory, the memory serving to store program
instructions corresponding to the operations of the system. As
shown, an operation can be implemented in whole or in part
using program instructions accessible by a module. The mod-
ules are connected to a communication path 605, and any
operation can communicate with other operations over com-
munication path 605. The modules of the system can, indi-
vidually or in combination, perform method operations
within system 600. Any operations performed within system
600 may be performed in any order unless as may be specified
in the claims. The embodiment of FIG. 6 implements a por-
tion of a computer system, shown as system 600, comprising
a computer processor to execute a set of program code
instructions (see module 610) and modules for accessing
memory to hold program code instructions to perform:
receiving a first row to be inserted into the existing relational
database table, the first row having at least two constrained
columns corresponding to the multi-column/multi-row con-
straint (see module 620); preventing conflicting access grants
to the at least two constrained columns of the existing rela-
tional database table (see module 630); evaluating the multi-
column/multi-row constraint, the evaluation using at least the
first row to be inserted and at least one row of the existing
relational database table (see module 640); and inserting the
first row into the existing relational database table when the
multi-column/multi-row constraint is satisfied (see module
650).

System Architecture Overview

FIG. 7 depicts ablock diagram of an instance of a computer

system 700 suitable for implementing an embodiment of the

10

15

20

25

30

40

45

50

55

60

65

14

present disclosure. Computer system 700 includes a bus 706
or other communication mechanism for communicating
information, which interconnects subsystems and devices,
such as a processor 707, a system memory 708 (e.g., RAM),
a static storage device (e.g., ROM 709), a disk drive 710 (e.g.,
magnetic or optical), a data interface 733, a communication
interface 714 (e.g., modem or Ethernet card), a display 711
(e.g., CRT or LCD), input devices 712 (e.g., keyboard, cursor
control), and an external data repository 731.

According to one embodiment of the disclosure, computer
system 700 performs specific operations by processor 707
executing one or more sequences of one or more instructions
contained in system memory 708. Such instructions may be
read into system memory 708 from another computer read-
able/usable medium, such as a static storage device or a disk
drive 710. In alternative embodiments, hard-wired circuitry
may be used in place of or in combination with software
instructions to implement the disclosure. Thus, embodiments
of the disclosure are not limited to any specific combination
of hardware circuitry and/or software. In one embodiment,
the term “logic” shall mean any combination of software or
hardware that is used to implement all or part of the disclo-
sure.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 707 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 710. Volatile media includes
dynamic memory, such as system memory 708.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
orany other magnetic medium; CD-ROM or any other optical
medium; punch cards, paper tape, or any other physical
medium with patterns of holes; RAM, PROM, EPROM,
FLASH-EPROM, or any other memory chip or cartridge, or
any other non-transitory medium from which a computer can
read data.

In an embodiment of the disclosure, execution of the
sequences of instructions to practice the disclosure is per-
formed by a single instance of the computer system 700.
According to certain embodiments of the disclosure, two or
more computer systems 700 coupled by a communications
link 715 (e.g., LAN, PTSN, or wireless network) may per-
form the sequence of instructions required to practice the
disclosure in coordination with one another.

Computer system 700 may transmit and receive messages,
data, and instructions, including programs (e.g., application
code), through communications link 715 and communication
interface 714. Received program code may be executed by
processor 707 as it is received, and/or stored in disk drive 710
or other non-volatile storage for later execution. Computer
system 700 may communicate through a data interface 733 to
a database 732 on an external data repository 731. A module
as used herein can be implemented using any mix of any
portions of the system memory 708, and any extent of hard-
wired circuitry including hard-wired circuitry embodied as a
processor 707.

In the foregoing specification, the disclosure has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be

US 9,384,228 B2

15

changed without affecting the scope or operation of the dis-
closure. The specification and drawings are, accordingly, to
be regarded in an illustrative sense rather than restrictive
sense.

What is claimed is:

1. A computer implemented method for implementing a
multi-column/multi-row constraint when two or more con-
currently running transactions are inserting rows into one
relational database table, the method comprising:

receiving a first row to be inserted into the one relational

database table for a first transaction of the two or more
concurrently running transactions, the first row having
first values in at least two constrained columns corre-
sponding to the multi-column/multi-row constraint,
wherein the multi-column/multi-row constraint oper-
ates concurrently on multiple columns and multiple
rows in the one relational database table;

receiving a second row to be inserted into the one relational

database table for a second transaction of the two or
more concurrently running transactions, the second row
having second values in the at least two constrained
columns corresponding to the multi-column/multi-row
constraint;

preventing conflicting access grants to the at least two

constrained columns of the one relational database table
by evaluating the first values and the second values,
wherein preventing the conflicting access grants com-
prises using a column lock to lock one or more columns
of'the at least two constrained columns with a specified
column value;

evaluating the multi-column/multi-row constraint using at

least one of the first row and the second row to be
inserted and at least one row of the one relational data-
base table; and

inserting the first row and/or second row into the one rela-

tional database table when the multi-column/multi-row
is satisfied.

2. The method of claim 1, wherein preventing conflicting
access grants comprises denying access grants when one of
the first values is different from a corresponding one of the
second values.

3. The method of claim 1, wherein preventing conflicting
access grants comprises allowing access grants when the first
values do not differ from the corresponding second values.

4. The method of claim 1, wherein preventing conflicting
access grants comprises granting the first row an exclusive
access to the at least two constrained columns.

5. The method of claim 1, wherein preventing conflicting
access grants to the two constrained columns of the one
relational database table comprises an access exception.

6. The method of claim 1, wherein the column lock has a
lock name that corresponds to the specified column value,
such that a transaction that holds the column lock has inserted
a row having the specified column value.

7. The method of claim 1, wherein preventing conflicting
access grants comprises:

creating a lock on one or more columns of the at least two

constrained columns with a respective value of the first
values in the one or more locked columns;

acquiring the lock as an exclusive access lock for the first

row when no other concurrent transactions has a same
column value in the one or more locked columns as the
respective value; and

acquiring the lock as a shared lock when any of other

concurrent transactions has a same column value in the
one or more locked columns as the respective value.

5

15

20

25

30

35

40

45

50

55

60

65

16

8. A computer system for implementing a multi-column/
multi-row constraint when two or more concurrently running
transactions are inserting rows into one relational database
table, comprising:

a computer processor to execute a set of program code

instructions; and

a memory to hold the program code instructions, in which

the program code instructions comprises program code
to perform,

receiving a first row to be inserted into the one relational

database table for a first transaction of the two or more
concurrently running transactions, the first row having
first values in at least two constrained columns corre-
sponding to the multi-column/multi-row constraint,
wherein the multi-column/multi-row constraint oper-
ates concurrently on multiple columns and multiple
rows in the one relational database table;

receiving a second row to be inserted into the one relational

database table for a second transaction of the two or
more concurrently running transactions, the second row
having second values in the at least two constrained
columns corresponding to the multi-column/multi-row
constraint;

preventing conflicting access grants to the at least two

constrained columns of the one relational database table
by evaluating the first values and the second values,
wherein preventing the conflicting access grants com-
prises using a column lock to lock one or more columns
of the at least two constrained columns with a specified
column value;

evaluating the multi-column/multi-row constraint using at

least one of the first row and the second row to be
inserted and at least one row of the one relational data-
base table; and

inserting the first row and/or second row into the one rela-

tional database table when the multi-column/multi-row
constraint is satisfied.

9. The computer system of claim 8, wherein preventing
conflicting access grants comprises denying access grants
when one of the first values is different from a corresponding
one of the second values.

10. The computer system of claim 8, wherein preventing
conflicting access grants comprises allowing access grants
when the first values do not differ from the corresponding
second values.

11. The computer system of claim 8, wherein preventing
conflicting access grants comprises granting the first row an
exclusive access to the at least two constrained columns.

12. The computer system of claim 8, wherein preventing
conflicting access grants to the two constrained columns of
the one relational database table comprises an access excep-
tion.

13. The computer system of claim 8, wherein the column
lock has a lock name that corresponds to the specified column
value, such that a transaction that holds the column lock has
inserted a row having the specified column value.

14. The computer system of claim 8, wherein preventing
conflicting access grants comprises:

creating a lock on one or more columns of the at least two

constrained columns with a respective value of the first
values in the one or more locked columns;

acquiring the lock as an exclusive access lock for the first

row when no other concurrent transactions has a same
column value in the one or more locked columns as the
respective value; and

US 9,384,228 B2

17

acquiring the lock as a shared lock when any of other
concurrent transactions has a same column value in the
one or more locked columns as the respective value.
15. A computer program product embodied in a non-tran-
sitory computer readable medium, the computer readable
medium having stored thereon a sequence of instructions
which, when executed by a processor causes the processor to
execute a process to implement a multi-column/multi-row
constraint when two or more concurrently running transac-
tions are inserting rows into one relational database table, the
process comprising:
receiving a first row to be inserted into the one relational
database table for a first transaction of the two or more
concurrently running transactions, the first row having
first values in at least two constrained columns corre-
sponding to the multi-column/multi-row constraint,
wherein the multi-column/multi-row constraint oper-
ates concurrently on multiple columns and multiple
rows in the one relational database table;
receiving a second row to be inserted into the one relational
database table for a second transaction of the two or
more concurrently running transactions, the second row
having second values in the at least two constrained
columns corresponding to the multi-column/multi-row
constraint;
preventing conflicting access grants to the at least two
constrained columns of the one relational database table
by evaluating the first values and the second values,
wherein preventing the conflicting access grants com-
prises using a column lock to lock one or more columns
of'the at least two constrained columns with a specified
column value;
evaluating the multi-column/multi-row constraint using at
least one of the first row and the second row to be
inserted and at least one row of the one relational data-
base table; and

10

15

20

25

30

18

inserting the first row and/or second row into the one rela-
tional database table when the multi-column/multi-row
constraint is satisfied.

16. The computer program product of claim 15, wherein
preventing conflicting access grants comprises denying
access grants when one of the first values is different from a
corresponding one of the second values.

17. The computer program product of claim 15, wherein
preventing conflicting access grants comprises allowing
access grants when the first values do not differ from the
corresponding second values.

18. The computer program product of claim 15, wherein
preventing conflicting access grants comprises granting the
first row an exclusive access to the at least two constrained
columns.

19. The computer program product of claim 15, wherein
the column lock has a lock name that corresponds to the
specified column value, such that a transaction that holds the
column lock has inserted a row having the specified column
value.

20. The computer program product of claim 15, wherein
preventing conflicting access grants comprises:

creating a lock on one or more columns of the at least two

constrained columns with a respective value of the first
values in the one or more locked columns;

acquiring the lock as an exclusive access lock for the first

row when no other concurrent transactions has a same
column value in the one or more locked columns as the
respective value; and

acquiring the lock as a shared lock when any of other

concurrent transactions has a same column value in the
one or more locked columns as the respective value.

#* #* #* #* #*

